Langsung ke konten utama

Pembahasan Matematika Persamaan Aljabar Dasar

Dipublikasikan : Juni 10, 2021, Diperbarui : Juni 10, 2021

Setelah mendengar persamaan aljabar, mungkin dipikiran kalian sangat erat kaitannya dengan variabel x dan y? Ya tidak salah juga sebenarnya. Namun, sebenarnya konsepnya mudah kok. 

Dari katanya saja sudah kelihatan betul apa maksud dari persamaan aljabar ini, yaitu Persamaan yang berarti suatu hal yang sama dengan hal lainnya.

Seperti contoh 1 = 1 merupakan suatu persamaan karena 1 sama dengan 1. Sebenarnya itu konsep dari persamaan.

1 = 1
1 + 2 = 1 + 2
3 = 3

Sudah terbayang belum? Jadi, jika kita ingin melakukan operasi matematika pada suatu persamaan, maka kita harus melakukannya di kedua sisi agar persamaan tersebut masih sama. Ya tentunya kalau nilainya beda di antara keduanya jadi bukan lagi termasuk persamaan dong? Lihat contoh di bawah,

1 = 1
1 + 1 = 1
2 = 1

Tidak masuk akal bukan? 2 kok sama dengan 1.

Nah, di persamaan aljabar ini kita menggunakan variabel, bisa `x,y,z`, ataupun lainnya. Variabel ini digunakan untuk mendefinisikan suatu nilai atau gampangnya untuk menyimpan nilai.

`x` = 10
`x` = 1919
`x` = 423834280
`x` = 32

Ya semacam itulah. Di soal biasanya di ruas `x` berada itu dilakukan operasi matematika untuk lebih meningkatkan kualitas soal. Seperti,

`x` + 1 = 5
`x` - 3 = 8
3`x` = 12
`x` : 3 = 9

Sebenarnya persamaan di atas sangat mudah untuk diselesaikan. Gampangnya gini, coba kalian pahami dan rubah kalimat persamaan tersebut ke dalam suatu bahasa, yaitu

`x` ditambah 1 jadi 5
maka `x` adalah?

kita beli apel sejumlah `x`. Jumlah tersebut kita ambil lagi 1 sehingga total apel kita menjadi 5. Jadi, untuk mengetahui jumlah `x`, maka kita kembalikan 1 apel yang telah ambil sehingga 5 - 1 = 4.

Mudah bukan?

Kalau secara sistematis, kita ingin agar `x` itu sendirian tidak dibagi, tidak dikali, dan tidak ada operasi apapun di sisi `x`. Mudahnya, kita perlu mendapatkan bentuk `frac{x}{1} - 0` yang berarti = x, benar bukan?

Nah, mari kita implementasikan ke soal

`x` + 1 = 5

Kalau kalian perhatikan sebenarnya `x` + 1 = 5 itu sama dengan `frac{x}{1}` + 1 = 5
Namun, biasanya untuk per-satu itu tidak ditulis karena ya hasilnya adalah bilangan yang dibagi itu sendiri.

Langkah selanjutnya adalah kita perlu mengubah `x` + 1 menjadi `x` - 0
Maka tinggal kita kurangi dengan bilangan itu sendiri bukan?

`x` + 1 - 1 = 5 - 1
`x` - 0 = 4
`x` = 4
Lagi-lagi - 0 diabaikan karena tidak memiliki kegunaan. Apapun yang dikurangi 0 ya tidak berkurang.

Untuk pengurangan sama saja
`x` - 3 = 8
`x` - 3 + 3 = 8 + 3
`x` - 0 = 11
`x` = 11

Selanjutnya, kita akan ke perkalian
3`x` = 12
Kita akan mengubahnya ke dalam bentuk `frac{x}{1}` - 0 = 12
Nah, di sini untuk konstanta sudah 0, namun masih dalam bentuk `frac{3x}{1}` yang harus kita ubah ke `frac{x}{1}`
Bagaimana caranya? Nah, kita bisa misalkan lagi nih `frac{x}{1}` itu sama dengan `frac{1xx x}{1}`
Jadi kita akan mengubah 3`x` ke 1`x`, ya kita bagi bilangan koefisien tersebut dengan bilangan itu sendiri agar menjadi 1.
3`x` : 3 = 12 : 3
1`x` = 4
x = 4

Untuk pembagian sama saja
`x` : 3 = 9 => `frac{x}{3}` = 9

`frac{x}{3}` x 3 = 9 x 3

`frac{x}{1}` x 1 = 27

x = 27

Komentar

Postingan populer dari blog ini

Cara Menyalakan PSU ATX Tanpa Komputer Dengan Metode Jumper

Dipublikasikan : Agustus 16, 2020, Diperbarui : Juni 26, 2023
Halo semuanya. Mungkin sebagaian dari kalian bingung untuk menyalakan psu tanpa komputer atau hanya ingin mengetest psu saja tanpa harus memasangnya di motherboard komputer atau sebagainya. Teori PSU ATX akan hidup apabila sinyal pada PS-ON adalah low dan akan mati dalam keadaan standby apabila sinyal pada PS-ON high. Kondisi low didefinisikan sebagai kondisi di mana tegangan listrik berada pada kondisi minimum, yaitu 0V, sedangkan kondisi high berarti tegangannya berada pada nilai maksimumnya dalam kasus PS-ON ini adalah 5V.  Pada kondisi awal, IC PWM yang membaca sinyal PS-ON akan dialiri tegangan 5V yang berarti dalam kondisi high sehingga membuat IC tersebut meresponnya dengan tidak mengaktifkan tegangannya.  Apabila kita jumperkan kabel PS-ON yang berwarna hijau ke ground yang berwarna hitam, maka tentu saja tegangan pada PS-ON mengalir ke ground (negatif) sehingga PS-ON tidak mempunyai tegangan. Karena tidak ada tegangan, maka PS-ON akan didefinisikan dalam kondis

Menghilangkan Proteksi Pada Power Supply ATX LA8100PN Dan Sejenisnya

Dipublikasikan : Agustus 16, 2020, Diperbarui : Februari 19, 2024
Halo semuanya, pada tutorial kali ini saya ingin berbagi cara untuk menghilangkan sistem proteksi pada power supply atx atau biasa disebut juga psu komputer. Proteksi ini biasanya mencakup Over Current Protection, Over Voltage Protection, dan Under Voltage Protection. Nah, sistem proteksi-proteksi di atas akan menghalangi kalian untuk memakai seluruh daya pada psu atx, yang biasanya digunakan untuk MBR/Penghancur Short. Setelah sistem proteksi tersebut dihilangkan, maka kalian secara bebas dapat memakai seluruh daya pada psu tersebut, baik untuk MBR, Las Mini, dan bahkan untuk men-shortkannya pun tidak masalah (Sebentar saja). WARNING : DAPAT MENIMBULKAN KEBAKARAN JIKA TIDAK BERHATI-HATI DALAM MELAKUKAN LANGKAH-LANGKAHNYA. TANYAKAN KEPADA ORANG YANG BERKOMPETEN KETIKA INGIN MELAKUKAN PERCOBAAN LEBIH MENDALAM. Cara Mematikan Sistem Proteksi Ini adalah penampakan dari boardnya. Bagian yang saya lingkarin tersebut merupakan ic pwm dari psu ini.

Pembuktian Rumus Luas Segitiga

Dipublikasikan : Februari 22, 2021, Diperbarui : Juni 11, 2021
Bagaimana segitiga mempunya rumus 1/2 x alas x tinggi? Di artikel ini saya akan membahasnya dengan cara pembuktian melalui visualisasi. Pertama mari kita potong alasnya menjadi setengah atau menjadi 1/2 alasnya.  Nah, sudah sedikit terbayang kan? asalnya 1/2 ya dari sini. Lalu, saya beri tanda salah satu bagiannya dengan warna gelap. Kita potong deh segitiganya sehingga dari satu buah segitiga sama kaki menjadi dua buah segitiga siku-siku. Kita samakan dengan  membalik segitiga siku-siku gelap sehingga punya bentuk yang sama dengan segitiga terang. Ingat! kedua bangun ini adalah kembar, membaliknya hanya untuk mempermudah penglihatan saja. Lalu, putar segitiga yang gelap. Sudah bisa melihat bentuk akhirnya bukan? Yep, kita gabung kedua segitiga tersebut dan jadilah sebuah persegi panjang. Kalau kalian perhatikan, karena tadi kita potong alasnya menjadi setengah maka dari situlah didapat setengah alas x tinggi yang mana merupakan rumus persegi atau pun persegi panjang. Tingginya tidak b

Cara Clone Aplikasi Secara Tidak Terbatas Di Android

Dipublikasikan : Maret 11, 2020, Diperbarui : Agustus 26, 2020
Clone atau menggandakan aplikasi sudah menjadi hal lumrah saat ini. Pasalnya, hal tersebut sangat berguna ketimbang kita membeli handphone lain.  Yuk! Simak tutorialnya di bawah ini. (H3) Cara Clone Aplikasi Di Android Pertama-tama silahkan install aplikasinya terlebih dahulu. Disini saya menggunakan aplikasi Multi Parallel - Multiple Accounts & App Clone  yang bisa kalian download melalui link berikut  https://play.google.com/store/apps/details?id=multi.parallel.dualspace.cloner Setelah diinstall, untuk clone aplikasi silahkan pencet Add Clone Lalu, pencet aplikasi yang ingin kalian clone. Nah, setelah kalian klik aplikasi yang kalian mau clone pasti terdapat centang birunya dan silahkan pencet Add Clone . Tulisan (1) adalah banyaknya aplikasi yang saya mau clone yaitu cuma 1 aplikasi. Maka aplikasi yang telah kalian clone akan terlihat di halaman depan dari aplikasi Multi Paralle

Pembuktian Luas Permukaan Kerucut

Dipublikasikan : April 07, 2021, Diperbarui : Juni 11, 2021
Jika kita perhatikan, luas permukaan kerucut terdiri dari satu lingkaran utuh dan bagian dari lingkaran (juring), maka kita peroleh Luas Permukaan Kerucut = Lingkaran + Juring AB Dan ternyata panjang busur AB = keliling lingkaran dengan jari-jari r  dikarenakan kedua garis tersebut merupakan rusuk pada bangun kerucut.  Busur AB = Keliling lingkaran utuh = `2pir`    Kalian perhatikan bahwa Juring AB memiliki garis pelukis s yang merupakan jari-jari sebuah lingkaran penuh. Perhatikan ilustrasi berikut   Dari ilustrasi, kita bisa mendapatkan luas dari Juring AB dengan membandingkan antara busur AB dan keliling lingkaran penuh yang berjari-jari s . Kita anggap lingkaran penuh dari ilustrasi tersebut adalah lingkaran besar, maka   `frac{text(Luas Juring AB)}{text(Luas Lingkaran Besar)} = frac{text(Busur AB)}{text(Keliling Lingkaran Besar)}`     Luas Juring AB = `frac{text(Busur AB)}{text(Keliling Besar)} xx text(Luas Lingkaran Besar)`  = `frac{2pir}{2pis} xx pis^2` = `frac{cancel(2pi)r}{can

Pembuktian Rumus Luas Trapesium

Dipublikasikan : Maret 26, 2021, Diperbarui : Juni 11, 2021
Mengapa rumus luas trapesium adalah `frac{1}{2} xx` (sisi atas + sisi bawah) `xx` tinggi? Di sini saya akan membahas tentang hal tersebut.  Saya akan membahas trapesium siku-siku dahulu dan dilanjutkan dengan pembahasan trapesium sama kaki. Sebenarnya mudah kok. Setelah kita tarik garis maka kalian sudah bisa membayangkan tentang bangun datar penyusun trapesium bukan? Trapesium terdiri satu satu persegi atau persegi panjang dengan segitiga siku-siku Nah, berarti Luas Trapesium = Luas Persegi ABCE + Luas Segitiga ECD L = AB`xx`BC + `frac{1}{2}`CD`xx`EC Kalau kita perhatikan garis AB = EC, maka L = EC`xx`BC  +  `frac{1}{2}`CD`xx`EC = `(BC + frac{1}{2}CD)` `xx` EC = `(BC + frac{CD}{2})` `xx` EC Kita bisa melakukan sedikit modifikasi di sini, yaitu kita samakan penyebut dari BC agar bisa dijumlahkan dengan CD L = `(frac{2BC}{2} + frac{CD}{2})` `xx` EC = `(frac{BC + BC}{2} + frac{CD}{2})` `xx` EC = `(frac{BC + color(red)(BC + CD)}{2})` `xx` EC BC + CD = BD, maka = `(frac{color(blue)(BC) +